HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) H I SEMESTER END SUBPLEMENTARY EXAMINATIONS MARCH/APPL 2

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 MATHEMATICS-III

(Common to CE,EEE,ME,ECE,CSE,CSIT,IT,AME,CSE(IoTCSBT) Branches)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1.	a)	Develop an iterative formula to find $\sqrt[k]{N}$ using Newton Raphson method	[2M]	1	
	b)	Explain merits and demerits of Taylor series method	[2M]	2	
	c)	Obtain the Fourier coefficient a_n for $f(x) = x^2$ in $-\pi \le x \le \pi$.	[2M]	3	
	d)	State the Fourier integral theorem.	[2M]	4	
	e)	Eliminate the arbitrary constants a and b from $z = ax + by + ab$.	[2M]	5	

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL		
UNIT-I							
2.	a)	Find an approximate value of the real root of $x - \cos x = 0$ by Bisection method correct up to four decimal places between 0 and 1.	[5M]	1			
	b)	Using Lagrange's formula, calculate $y(40)$ from the following table. x 30 35 45 55	[5M]	1			
		Y 148 96 68 34					
OR							
3.	a)	Find the root of the equation $xe^x = \cos x$ by method of false position correct up to four decimal places between 0 and 1.	[5M]	1			
	b)	Applying Newton's Forward Interpolation formula, compute the value of $\sqrt{5.5}$, given that $\sqrt{5} = 2.236$, $\sqrt{6} = 2.449$, $\sqrt{7} = 2.646$, $\sqrt{8} = 2.828$ correct up to 3 decimal places.	[5M]	1			
		UNIT-II					
4.	a)	Evaluate $\int_{0}^{6} \frac{dx}{1+x^{2}}$, by using (a) Simpson's $\frac{1}{3}^{rd}$ rule (b) Simpson's $\frac{3}{8}^{th}$ rule (c) Trapezoidal rule.	[5M]	2			
	b)	Using Modified Euler's method, find an approximate value of y when	[5M]	2			
		$x = 0.3$ given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$					
	OR						

5.		Using Runge–Kutta method of fourth order, solve $y' = \frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$ at	[10M]	2			
		x = 0.2, x = 0.4					
UNIT-III							
6.		Find the Fourier series to represent the function $f(x) = e^{-ax}, -\pi \le x \le \pi$.	[10M]	3			
		Hence deduce that $2\left[\frac{1}{2^2+1} - \frac{1}{3^2+1} + \frac{1}{4^2+1} - \dots\right] = \frac{\pi}{\sinh \pi}.$					
		OR					
7.	a)	Expand $f(x) = \cos x, 0 < x < \pi$ in half range sine series.	[5M]	3			
	b)	Find the Fourier series of $f(x) = \frac{\pi - x}{2}, 0 < x < 2.$	[5M]	3			
		UNIT-IV					
		$\begin{pmatrix} 1 & 2 \\ \end{pmatrix} \mid = 1$					
8.		Find Fourier transform of $f(x) = \begin{cases} 1-x , x \le 1\\ 0, x > 1 \end{cases}$,	[10M]	4			
		hence evaluate $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cos\left(\frac{x}{2}\right) dx$					
OR							
9.	a)	Find the Fourier cosine transform of e^{-x^2}	[5M]	4			
		_ <u>ax</u>		4			
	b)	Find the Fourier sine transform of e^{-x}	[JNI]	4			
UNIT-V							
10.		Solve by the method of separation of variable $u_x = 4u_y, u(0, y) = 8e^{-3y}$	[10M]	5			
OR							
11.		Derive one-dimensional wave equation.	[10M]	5			

R18
